- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Beers, Timothy C (1)
-
Huang_黄, Bowen 博闻 (1)
-
Huang_黄, Yang 样 (1)
-
Xiang_向, Maosheng 茂盛 (1)
-
Xiao_肖, Kai 凯 (1)
-
Xu_徐, Shuai 帅 (1)
-
Yang_杨, Lin 琳 (1)
-
Yuan_苑, Haibo 海波 (1)
-
Zhang_张, Jinming 津铭 (1)
-
Zhang_张, Meng 萌 (1)
-
Zhang_张, Ruoyi 若羿 (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We design an uncertainty-aware cost-sensitive neural network (UA-CSNet) to estimate metallicities from dereddened and corrected Gaia BP/RP (XP) spectra for giant stars. This method accounts for both stochastic errors in the input spectra and the imbalanced density distribution in [Fe/H] values. With a specialized architecture and training strategy, the UA-CSNet improves the precision of the predicted metallicities, especially for very metal-poor (VMP; [Fe/H] ≤ −2.0) stars. With the PASTEL catalog as the training sample, our model can estimate metallicities down to [Fe/H] ∼ −4. We compare our estimates with a number of external catalogs and conduct tests using star clusters, finding overall good agreement. We also confirm that our estimates for VMP stars are unaffected by carbon enhancement. Applying the UA-CSNet, we obtain reliable and precise metallicity estimates for approximately 20 million giant stars, including 360,000 VMP stars and 50,000 extremely metal-poor ([Fe/H] ≤ −3.0) stars. The resulting catalog is publicly available via the Chinese Virtual Observatory at doi: 10.12149/101604. This work highlights the potential of low-resolution spectra for metallicity estimation and provides a valuable data set for studying the formation and chemodynamical evolution of our Galaxy.more » « lessFree, publicly-accessible full text available June 20, 2026
An official website of the United States government
